cAMP-adenosine pathway in the proximal tubule.
نویسندگان
چکیده
The "extracellular cAMP-adenosine pathway" refers to the conversion of cAMP to AMP by ecto-phosphodiesterase, followed by metabolism of AMP to adenosine by ecto-5'-nucleotidase, with all the steps occurring in the extracellular compartment. This study investigated whether the extracellular cAMP-adenosine pathway exists in proximal tubules. Freshly isolated proximal tubules rapidly converted basolaterally administered cAMP to AMP and adenosine. Proximal tubular cells in culture (first passage) rapidly converted apically administered cAMP to AMP and adenosine. In both freshly isolated proximal tubules and cultured proximal tubular cells, conversion of cAMP to AMP and adenosine was affected by a broad-spectrum phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine), an ecto-phosphodiesterase inhibitor (1,3-dipropyl-8-p-sulfophenylxanthine), and a blocker of ecto-5'-nucleotidase (alpha,beta-methyleneadenosine-5'-diphosphate) in a manner consistent with exogenous cAMP being processed by the extracellular cAMP-adenosine pathway. In cultured proximal tubular cells, but not freshly isolated proximal tubules, stimulation of adenylyl cyclase increased extracellular concentrations of cAMP, AMP, and adenosine plus inosine, and these changes were also modulated by the inhibitors in a manner consistent with the extracellular cAMP-adenosine pathway. Conversion of renal interstitial (basolateral) cAMP and AMP to adenosine in vivo was shown by microdialysis coupled with ion trap mass spectrometry. Western blot analysis showed A1, A2A, and A3 receptors on both apical and basolateral proximal tubular membranes, with A1 and A2A receptors more highly expressed on basolateral compared with apical membranes. We conclude that cAMP that reaches either the apical or basolateral membranes of proximal tubular cells is converted in part to adenosine that has ready access to adenosine receptors.
منابع مشابه
P138: Are Depression and Anxiety Affected by Adenosine A2A Receptors?
Adenosine acts as neuromodulator in the brain, which its involvement in a wide range of brain processes and diseases has been studied, such as epilepsy, sleep, anxiety, panic disorder, Alzheimer’s disease, Parkinson’s disease and schizophrenia. Adenosine receptors have been detected: A1R, A2AR (A2AR), A2BR, and A3R. A1R and A2R inhibit cAMP production, while A2AR and A2BR stimulate cAMP product...
متن کاملAngiotensin II counteracts the effects of cAMP/PKA on NHE3 activity and phosphorylation in proximal tubule cells.
Binding of angiotensin II (ANG II) to the AT1 receptor (AT1R) in the proximal tubule stimulates Na+/H+ exchanger isoform 3 (NHE3) activity through multiple signaling pathways. However, the effects of ANG II/AT1R-induced inihibitory G protein (Gi) activation and subsequent decrease in cAMP accumulation on NHE3 regulation are not well established. We therefore tested the hypothesis that ANG II re...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کاملThe cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport
Determining the individual roles of the two dopamine D1-like receptors (D1R and D5R) on sodium transport in the human renal proximal tubule has been complicated by their structural and functional similarity. Here we used a novel D5R-selective antagonist (LE-PM436) and D1R- or D5R-specific gene silencing to determine second messenger coupling pathways and heterologous receptor interaction betwee...
متن کاملDopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.
Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 317 3 شماره
صفحات -
تاریخ انتشار 2006